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ABSTRACT 
Selecting small targets is di�cult on tiny displays due to the “fat-
�nger problem”. In this paper, we explore the possibility of using a 
force-based approach to target selection on smartwatches. First, we 
identify the most comfortable range of force on smartwatches. We 
then conduct a 1D Fitts’ law study to compare the performance of 
tap and force-tap. Results revealed that force-tap is signi�cantly bet-
ter in selecting smaller targets, while tap outperforms force-tap for 
bigger targets. We then developed two new force-based keyboards 
to demonstrate the feasibility of force input in practical scenarios. 
These single-row alphabetical keyboards enable character-level text 
entry by performing slides and variating contact force. In a user 
study, these keyboards yielded about 4 wpm with about 2% error 
rate, demonstrating the viability of force input on smaller screens. 
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1 INTRODUCTION 
Smartwatches are becoming increasingly popular among mobile 
users [22]. However, selecting targets, particularly small targets, 
is di�cult on smartwatches due to the “fat-�nger problem” [34]. 
To facilitate precise target selection, most smartwatch applications 
either clutter the interface by using large interactive elements or 
require users to perform a sequence of actions. Both of these ap-
proaches a�ect performance and user preference [20, 28]. In this 
work, we propose a one-directional force-based target selection 
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approach, with which users slide the �nger closer to the target, 
then variate contact force to move the cursor along the G-axis (re-
ducing the force moves the cursor to the left and increasing the 
force moves the cursor to the right) to select the target. 

Toward this, we �rst identify the most comfortable range of 
force on smartwatches. We then compare one-directional force with 
traditional touch in a Fitts’ law experiment. Finally, to demonstrate 
practical usage of the proposed method, we design and evaluate two 
new force-based text entry techniques for smartwatches (Section 6). 
Unlike the existing techniques, these neither occupy most of the 
display nor use aggressive correction model by disabling character-
by-character input. The contribution of this work is thus threefold: 
identifying the most comfortable range of force on smartwatches, 
comparison of one-directional force-tap with conventional touch in 
a Fitts’ law study, and the design and evaluation of two new novel 
force-based keyboards. All studies reported here were approved by 
the Institutional Review Board (IRB) and conducted abiding by the 
institute’s COVID-19 preventive measures. 

2 RELATED WORK 
Not much work focused on target selection on smartwatches. Hara 
et al. [12] investigated the e�ects of button size and location on 
target selection performance with the index �nger. They found out 
5 mm and 7 mm targets are susceptible to signi�cantly higher se-
lection errors than 10 mm targets. Ishii and Shizuki [18] developed 
eight di�erent callout features that display and magnify the area oc-
cluded by the �nger in a non-occluded area. In multiple evaluations, 
participants found these methods to be useful in target selection. 
Xia et al. [35] developed a �nger-mounted �ne-tip stylus to enable 
fast and accurate pointing with almost no occlusion. In a study, the 
stylus reduced erroneous selection by 80% compared to traditional 
touch interaction. Yeo et al. [36] compared target selection in all 
directions with force-tap, twist, and pan gestures, where force-tap 
was the most challenging of all methods since it was di�cult to 
apply force in the correct direction. Kurosawa et al. [21] used a 
tilt and force hybrid method for target selection on a smartwatch. 
This method uses an electromyography sensor on the arm to detect 
tilting of the device. To select a target, users �rst tilt the hand to 
indicate the cursor direction, then apply force on the arm to move 
the cursor to the target. Darbar et al. [11] augmented a smartwatch 
with four pressure sensors to enable users to apply di�erent levels 
of force on the two sides of the device for zooming, scrolling, and 
rotating an interactive map. Ahn et al. [1] used a pressure-sensitive 
wristband to perform similar interactions. These three methods, 
however, require extramural hardware to function. 

https://orcid.org/0000-0003-2939-5176
https://orcid.org/0000-0002-8384-4764
https://doi.org/10.1145/3569009.3572741
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3569009.3572741
mailto:asarif@ucmerced.edu
mailto:yren5@ucmerced.edu


TEI ’23, February 26-March 1, 2023, Warsaw, Poland Yuan Ren and Ahmed Sabbir Arif 

(a) The wristband (b) The custom Apple iOS application 

Figure 1: (a) The wristband used in the study and (b) participants applying force on the screen. The grey, green, and red 
background colors indicate the initial force level, and correct and incorrect changes in the force level, respectively. 

There has been some research on force-based text entry on smart-
phones. McCallum et al. [25] developed a force-based technique 
for the standard 12-key mobile keypad by utilizing three levels 
of force. Likewise, Tang et al. [31] developed a three-key chorded 
keyboard with three force levels. Both these methods were highly 
error prone, yielding 9% and 18% error rates in user studies, respec-
tively. Brewster and Hughes [8] presented several pressure-based 
techniques to switch between uppercase and lowercase letters on a 
virtual Qwerty, some of which were faster and more accurate than 
the Shift key. Arif et al. [2], Arif and Stuerzlinger [5] developed an 
error prevention technique that requires applying extra force on the 
keys to enter the less probable letters. The e�ects of the approach 
on text entry performance were contradictory in two consecutive 
studies. Arif and Stuerzlinger [6] enabled bypassing auto-correction 
by applying extra force on the keys. In an evaluation, this approach 
signi�cantly improved text entry speed and accuracy. Vertanen et al. 
[32] used a similar approach on smartwatches. Zhong et al. [38] 
developed a one-dimensional alphabetical keyboard with a sliding 
cursor over the letters. The cursor covered multiple letters. Users 
moved the cursor by variating contact force, con�rmed selection 
by performing a quick release (reducing pressure quickly without 
lifting the �nger), the keyboard then disambiguated the input us-
ing a probabilistic model. It also enabled entering one character 
at a time by using a multi-tap [19] like approach. The keyboard 
displayed the selected letters in descending order of probability, 
users then multi-tapped on the screen to select the intended letter. 
In an evaluation, the word- and character-level approaches yielded 
on average 4 and 11 wpm, respectively, on a smartphone. More re-
cently, Ren and Arif [29] developed a force-based approach to pick 
numbers from a number wheel on smartwatches. There are, how-
ever, no force-based character-level text entry methods available 
for smartwatches. 

3 USER STUDY 1: LEVELS OF FORCE 
We conducted a user study to investigate the levels of force users 
can comfortably apply on smartwatches. The purpose was to map 
the most comfortable range of force to cursor movements on a tiny 
display. 

3.1 Participants 
Thirteen participants took part in the study. Their age ranged form 
24 to 34 years (M = 28.5, SD = 3.4). Three of them identi�ed them-
selves as women and ten as men. Nine of them were right-handed 

and four were left-handed. All of them were experienced mobile 
users (M = 8.4 years, SD = 2.3). Five of them also owned a smart-
watch (M = 0.5 years, SD = 0.9). Six of them had experience with 
force-based interaction through Apple iOS’s 3D touch [7]. They all 
received U.S. $10 for participating in the study. 

3.2 Apparatus 
We used an iPhone X (43.6⇥70.9⇥7.7 mm, 174 grams) running on 
iOS version 12.1 at 1125⇥2436 pixels resolution in the user study. 
We developed a custom app using the default iOS SDK to simulate 
an Apple Watch 5’s 740 mm2 display area (312⇥390 pixels) on 
the smartphone. We made the surrounding area of the simulated 
smartwatch touch-insensitive to avoid the e�ects of accidental 
touches during the study. We used a smartphone instead of an 
actual smartwatch since current smartwatches do not provide the 
support for continuous force detection. Apple Watch detects only 
the absence and presence of extra force. It is relatively common to 
use larger devices to study interactions with smartwatches due to 
technological limitations of current smartwatches [10, 18, 23, 26, 29]. 
Relevantly, a prior work reported that text entry performances of 
a keyboard on an actual smartwatch and a simulated smartwatch 
on a smartphone were comparable in terms of speed and accuracy 
[37]. To increase the external validity of the work, we replicated 
not only the interface but also the holding position and posture of a 
smartwatch. We used a wristband with silicone phone holder (55.5 
grams) to attach the smartphone to the wrist of the participants like 
a smartwatch (Fig. 1a). The wristband held the device on the wrist 
�rmly, thus participants did not have to hold it steady with the 
�ngers of the other hand, although we noticed a few participants 
occasionally doing that. The holder was 180� rotatable but we did 
not enable participants to rotate the device during the study to 
eliminate a potential confound. 

3.3 Design & Procedure 
First, the participants signed the informed consent form and com-
pleted a demographics and mobile usage questionnaire. We then 
explained the research and demonstrated the custom app and how 
to variate touch contact force on the screen. Participants were 
instructed to wear the device on their non-dominant hand and 
interact using the other hand. All participants were seated, but 
were instructed not to rest their arms on the desk to increase the 
external validity of the study. The app displayed one force level 
on the screen. Participants were instructed to touch the screen, 
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(a) Task completion time (ms) (b) Median force per level (c) Force applied in all tasks 

Figure 2: (a) Average task completion time (ms) per block for each force level, (b) median force applied per level, and (c) a radar 
chart showing force applied in each task. Error bars represent ±1 standard deviation (SD). 

then change contact force as instructed on the display, without 
compromising physical comfort. The area surrounding the sim-
ulated smartwatch screen was inactive, but was used to provide 
feedback on the applied level of force by changing the background 
color. Initially, the background color was grey, but changed to green 
when participants changed contact force correctly (reduced force 
for soft) and to red when changed contact force incorrectly (re-
duced force for hard) (Fig. 1b). Correct and incorrect force levels 
were determined based on the increments and decrements in the 
force value. Speci�cally, the system identi�ed a correct input when 
the force value changed in accordance to the displayed force level. 
For example, for hard force level, the system registered a correct 
input when the force value was gradually increasing. The system 
ignored slight variations in the force level (abrupt, discontinuous 
changes) since it is almost impossible for users to maintain a con-
stant level of force. Once done with one level, the app displayed the 
next force level. This process continued until all tasks of a block 
were completed. There were three block, each containing (3 levels ⇥ 
18 tasks) 54 tasks. Participants were asked to take ⇠5 minutes break 
before starting the next block to mitigate any discomfort due to 
variating contact force. In summary, the design was: 13 participants 
⇥ 3 blocks ⇥ 3 levels (soft, regular, hard) randomized ⇥ 18 tasks = 
1,755 data points in total. Upon completion, participants took part 
in a brief interview discussing their experience in the study. 

3.4 Results & Discussion 
The default Apple iOS SDK returns a value between 0 and 6.67 
for the amount of force imparted by the user’s �nger onto the 
screen. Similar to Ren and Arif’s work [29], we normalized it to 
the interval from 0 to 1 by dividing the received force value by the 
maximum force (6.67) for better presentation. The median force 
applied for soft, regular, and hard tasks were 0.10 (SD = 0.08), 0.39 
(SD = 0.12), and 0.55 (0.12), respectively (Fig. 2b). We, thus, decided 
to use [0.05, 0.80] as the rage of our mapping function, where the 
lowest value is ⇠ 12 ⇥ (⇡ from the median of soft force level and 
the highest value is ⇠ 2 ⇥ (⇡ from the median of hard force level. 

These values were picked by closely studying the force patterns 
of all participants. While participants were fairly consistent in the 
minimum levels of force applied on the screen, their maximum 
levels of force varied. In about 10% of all incidents, participants 
applied a maximum force level closer to 0.8. This suggests that they 
are comfortable with this force level. Participants also con�rmed 
this in the post-study interview. This encouraged us to increase the 
maximum value to o�er more granularity in the proposed force-
based selection method. In Fig. 2c, one can see that force values 
rarely went outside this range. The values between the range were 
then mapped to the 368 px horizontal space of the smartwatch 
using a linear function (Fig. 3). There was a signi�cant e�ect of 
level on task completion time (�2,12 = 63.94, ? < .0001). On average, 
soft, regular, and hard tasks took 149.03 ms (SD = 171.2), 557.28 ms 
(SD = 373.2), and 701.67 ms (SD =643.5) to complete, respectively 
(Fig. 2a). 

4 1D FITTS’ LAW PROTOCOL 
Fitts’ law is a well-established method for evaluating target selection 
on computing systems [24]. In the 1990s, it was included in the 
ISO 9241-9 standard for evaluating non-keyboard input devices 
by using Fitts’ throughput as a dependent variable [30]. Most one-
dimensional (1D) Fitts’ law experiments combine serial responses 
with 1D movements. The targets of width , are placed on the two 
sides of the display (Fig. 4b). The target to select is highlighted. 
Once selected, the highlight moves to the opposite target. This 
back-and-forth selection continues until all targets are selected. 
Each movement covers an amplitude �, which is distance to the 
centre of the target (Fig. 4a). A trial is de�ned as one target selection 
task, whereas completing all tasks with a given amplitude is de�ned 
as a sequence. Throughput cannot be calculated on a single trial 
because a sequence of trials is the smallest unit of action in ISO 
9241-9. Traditionally, the di�culty of each trial is measured in bits 
using an index of di�culty (�⇡), calculated as follows: 

� 
�⇡ = ;>62 ( + 1) (1)

, 
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(a) Smartwatch screen (b) The linear mapping function 

Figure 3: The force values within the range [0.05, 0.80] are mapped to the pixels of the display using a linear function. 

(a) The 1D Fitts’ law task in ISO 9241-9 (b) The custom Apple iOS application 

Figure 4: (a) The target is highlighted in purple, (b) the custom Apple iOS app displaying A=140, W=80. It uses the same selection 
sequence as ISO 9241-9. 

The movement time (") ) is measured in seconds for each trial, 
then averaged over the sequence of trials. It is then used to calculate 
the performance throughput () % ) in bits/second (bps) using the 
following equation: 

) % = 
�⇡ 

(2)
") 

The revised ISO 9241-9 (9241-411) [17] measures throughput 
using an e�ective index of di�cult �⇡4 , which is calculated from 
the e�ective amplitude �4 and the e�ective width ,4 to make 
sure that the real distance traveled form one target to the next is 
measured. It also takes into account the spread of selections about 
the target center. 

) % = 
� ⇡4 
") 

(3) 

�⇡4 
�4 = ;>62 (,4 

+ 1) (4) 

The e�ective amplitude is the real distance travelled by the par-
ticipants, while the e�ective width is calculated as follows, where 
(⇡G is the standard deviation of the selection coordinates projected 
on the G-axis for all trials in a sequence. This accounts for any tar-
geting errors by the participants, assuming that participants were 

aiming at the center of the targets. 

,4 = 4.133 ⇥ (⇡G (5) 

5 USER STUDY 2: 1D FITTS’ LAW STUDY 
We conducted a Fitts’ law study to compare target selection per-
formance of tap and force-tap. The purpose was to investigate if 
force-tap could be e�ective in selecting small targets on smart-
watches. We focused only on movements in the G-axis because we 
envision force as a companion of touch rather than an independent 
selection method, where users tap in the proximity of a target then 
move the cursor to the left or right for precise selection. Besides, 
the di�culties in applying force in all directions is evident in a 
prior work [36], where force was signi�cantly slower (2,600 ms) 
and more error prone (1.6%) than twist and pan gestures. 

5.1 Participants 
Twelve participants took part in the study. Their age ranged from 20 
to 34 years (M = 29.3, SD = 2.3). Five of them identi�ed themselves 
as women and seven as men. Ten of them were right-handed and 
two were left-handed. They all were experienced mobile device 
users (M = 10.8 years, SD = 2.7). Nine of them had experience with 
force-based interaction through Apple iOS’s 3D touch [7]. They all 
received U.S. $15 for participating in the study. 
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5.2 Apparatus & Design 
The study used the same apparatus as the previous study (Sec-
tion 3.2). A custom app was developed carry out the 1D Fitts’ law 
protocol described above. The experiment was a 2 ⇥ 3 ⇥ 3 within-
subjects design. The independent variables were method (tap, force-
tap), amplitude: 80, 140, 200 px (20, 35, 50 mm), and width: 10, 40, 
80 px (1.5, 12.5, 20 mm). There were 20 trials per condition. The 
amplitudes were selected based on the display area, to make sure 
that the targets do not overlap or go outside the boundary. The 
widths were selected based on the optimal widths recommended in 
prior research and design guidelines [12, 13, 15, 16]. The dependent 
variables were throughput (TP) and movement time (MT ). 

5.3 Procedure 
The study used the same procedure as the previous study (Sec-
tion 3.3), except for the tasks, which were in accordance with the 1D 
Fitts’ law protocol discussed in Section 4. In the study, participants 
selected targets using the two selection methods in a counterbal-
anced order. The cursor was initially positioned in between the 
targets, then moved back-and-forth from one target to another by 
either tap or variating contact force. Participants were instructed 
to select the targets as fast as possible. Incorrect selections were 
not allowed, in such cases, participants had to select it again. We 
enforced a ⇠5 minute break after a condition to avoid the e�ect 
of fatigue. After the completion of both conditions, participants 
completed the NASA-TLX questionnaire [20] to rate the perceived 
workload of the methods. They also took part in a brief interview 
session to discuss their experience in the study. 

5.4 Results 
5.4.1 Throughput. An ANOVA identi�ed a signi�cant e�ect of 
method on throughput (�1,11 = 76.05, ? < .0001). The average 
throughput for tap and force-tap were 2.7 bps (SD = 1.8) and 1.5 
bps (SD = 0.4), respectively. An ANOVA also identi�ed signi�-
cant e�ects of width (�2,11 = 165.50, ? < .0001) and amplitude 
(�2,11 = 24.56, ? < .0001). The method ⇥ width interaction e�ect 

was also statistically signi�cant (�2,22 = 78.12, ? < .0001). However, 
the method ⇥ amplitude interaction e�ect was not statistically sig-
ni�cant (�2,22 = 3.15, ? = .06). Fig. 5a illustrates average throughput 
for both methods across all examined widths and amplitudes. 

5.4.2 Movement Time. An ANOVA identi�ed a signi�cant e�ect 
of method on movement time (�1,11 = 5.92, ? < .05). The average 
movement time for tap and force-tap were 4,098 ms (SD = 5,266) 
and 2,052 ms (SD = 1,282), respectively. There was also a signi�cant 
e�ect of width (�2,11 = 30.78, ? < .0001). However, no signi�cant 
e�ect of amplitude was identi�ed (�2,11 = 0.69, ? = 0.51). The 
method ⇥ width interaction e�ect was also statistically signi�cant 
(�2,22 = 11.02, ? < .0005). But the method ⇥ amplitude interaction 
e�ect was not statistically signi�cant (�2,22 = 0.96, ? = 0.4). Fig. 5b 
illustrates average movement time for both methods across all 
examined widths and amplitudes. 

5.4.3 Perceived Workload. We present raw TLX scores by ana-
lyzing the sub-scales individually, which is a common modi�ca-
tion made to NASA-TLX [14]. A Wilcoxon Signed-Rank test failed 
to identify signi�cant e�ects of method on mental demand (I = 
�0.18, ? = .86), physical demand (I = �0.1, ? = .92), temporal 
demand (I = �0.23, ? = .81), performance (I = �1.65, ? = .10), 
and e�ort (I = �1.25, ? = .21). However, a signi�cant was identi-
�ed on frustration (I = �2.52, ? < .05). Fig. 6c illustrates average 
NASA-TLX ratings of the two methods. 

5.5 Discussion 
Tap yielded signi�cantly higher throughput than force-tap (⇠80% 
higher). However, the interaction e�ects suggest that throughput 
of the two methods were signi�cantly a�ected by the target size 
and amplitude. A post-hoc Tukey-Kramer test revealed that force-
tap performed signi�cantly better with the smallest target (⇠120% 
higher throughput), while tap performed signi�cantly better with 
the bigger ones (⇠100–151% higher throughput). This is also evident 
in Fig. 7 that illustrates average throughput for the two selection 
methods with the three target sizes (10, 40, 80 pixels) �tted to power 
trendlines. As one can see, both selection methods conformed to 

(a) Throughput (bps) (b) Movement time (ms) 

Figure 5: Average throughput (bps) and movement time (ms) for both methods across all examined widths and amplitudes. 
Error bars represent ±1 standard deviation (SD). 
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(a) Tap (b) Force-tap (c) Average NASA-TLX scores 

Figure 6: Two participants selecting targets with (a) tap and (b) force-tap, and (c) average perceived workload of the two methods. 
The red asterisk indicate statistically signi�cant di�erence. 

Figure 7: Average throughput (bts) for the two selection meth-
ods with the three target sizes �tted to power trendlines. 

Fitts’ law, as expected — with both, throughput decreased linearly 
with decreasing target sizes (tap: '2 = 0.91, force-tap: '2 = 0.88), 
however, tap had a much steeper drop than force-tap. 

Overall, force-tap was signi�cantly faster than tap (⇠50% faster). 
A deeper analysis indicated that di�culties in selecting the smallest 
target contributed to this. A post-hoc Tukey-Kramer test revealed 
that selection time for the smallest target was signi�cantly slower 
with tap than with force-tap (⇠67% slower), while selection time for 
the larger targets were somewhat comparable (see Fig. 5b). These 
suggest that force could be an e�ective method for selecting smaller 
targets on tiny displays. Post-study questionnaire and interview 
also support this. Participants found both methods relatively similar 
in terms of mental, physical, and temporal demands, performance, 
and e�ort, but were signi�cantly more frustrated with tap than 
force-tap (see Fig. 6c), primarily due to the smaller targets. One 
participant (male, 27 years) commented, “Some blocks have very tiny 
boxes and it was very hard to hit the right place. It was frustrating.” 
Another participant (female, 29 years) said, “Both touch and force 
seemed the same for bigger squares.” Participants also commented on 
the learnability of force-tap. One participant (male, 34 years) stated, 

“Force is pretty novel to me, it took me a little time to get used to the 
smallest one. Once I got used to it, I could �nish the task faster than 
beginning.” Some participants, on the other hand, preferred using 
force-tap exclusively on smartwatches. One participant (female, 27 
years) commented, “It is much easier for me to complete the task of 
force than touch.” Based on the �ndings, we recommend enabling 
both tap and force-tap on smartwatches. Tap is fast and reliable for 
bigger targets, but for those occasional smaller targets, force-tap is 
much more reliable, faster, and causes less frustration. 

6 SLICE KEYBOARDS 
To demonstrate practical usage of force input, we designed two 
slide and force (slice) keyboards that enable users to enter one 
character at a time using force-tap and �nger slide gestures. We 
used text entry as our test scenario because entering text is an 
extreme case of target selection, requiring repetitive selection of 
di�erent targets (the keys). We designed two alphabetical slice 
keyboards that display all letters of the English alphabet in a 368 
⇥ 70 px row (Fig. 8a). To enter a letter, the user slides her �nger 
horizontally along the G-axis anywhere on the screen. The letter 
closest to the G-coordinate of the �nger and the two neighbouring 
letters from each side (�ve in total) are magni�ed using a zoom-in 
e�ect. The slide-force keyboard highlights the central letter (Fig. 8b). 
The user can reduce contact force to highlight the left letters or 
increase contact force to highlight the right letters. Realising touch 
enters the highlighted letter. The slide-force-slide keyboard does 
not highlight the magni�ed letters (Fig. 8c), instead requires the 
user to apply extra force to replace the keyboard with magni�ed 
versions of the �ve letters (73.6 ⇥ 70 px each). The initial zoom-in 
mode of both keyboards are identical. But since the slide-force-
slide keyboard enables target selection via both force and slide, 
the candidate �ve letters are displayed on the keyboard area to 
facilitate sliding. Initially, the central letter is highlighted, but the 
user can side her �nger over any key, then release touch to enter the 
corresponding letter. Both keyboards enable the entry of space and 
backspace by performing swift left and right strokes, respectively, 
anywhere on the screen. 
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(a) Initial state (b) Slide-force keyboard (c) Slide-force-slide keyboard 

Figure 8: (a) the initial state of the keyboards showing all letters from ‘a’ to ‘z’, (b) the process of entering the letter ‘k’ with the 
slide-force keyboard: the user slides her �nger anywhere on the screen in relevance to the target, the keyboard magni�es the 
�ve nearby keys, because the target is on the left, the user reduces contact force to highlight the letter, then releases touch to 
enter it, (c) the process of entering the letter ‘n’ with the slide-force-slide keyboard: the user slides her �nger anywhere on the 
screen in relevance to the target, she applies extra force to replace the keyboard with magni�ed versions of the �ve nearby 
keys, the user then slides her �nger over the target letter and releases touch to enter it. 

7 USER STUDY 3: SLIDE-FORCE V. 
SLIDE-FORCE-SLIDE 

We conducted a user study to compare the two keyboards. Apart 
from evaluating the new keyboards, one purpose of the study was 
to demonstrate that force-based selection method could be used in 
practical scenarios. 

7.1 Participants 
Ten participants took part in the study. Their age ranged from 24 
to 34 years (M = 28.2, SD = 2.7). None of them participated in the 
previous studies. Three of them identi�ed themselves as women 
and seven as men. Eight of them were right-handed and two were 
left-handed. They all were experienced mobile device users (M = 
10 years, SD = 1.3). Six of them also owned a smartwatch (M = 1.6 
years, SD = 1.9). None of them had prior experience with force-
based interaction. They all received U.S. $15 for participating in the 
study. 

7.2 Apparatus & Design 
The study used the same apparatus as the previous studies (Sec-
tion 3.2). It was a 2 ⇥ 5 within-subjects design. The independent vari-
ables were method (slide-force, slide-force-slide) and block. There 
were �ve short English phrases [33] per block. The dependent vari-
ables were the commonly used words per minute (wpm) and error 
rate (%) performance metrics in text entry research [4]. In summary, 
the design was: 10 participants ⇥ 2 methods ⇥ 5 blocks ⇥ 5 phrases 
= 500 phrases in total. 

7.3 Procedure 
The study used the same procedure as the �rst study (Section 3.3), 
except for the tasks. During the study, participants transcribed 
short English phrases from a set [33] using the two keyboards in a 
counterbalanced order. A custom app displayed one random phrase 
at a time outside the smartwatch area (Fig. 10). Participants were 
instructed to read and memorize the phrase, then transcribe it as 
fast and as accurate as possible using either of the method. Error 
correction was recommended but not forced. Once entered, the app 
automatically displayed the next phrase. This continued until all 

phrases were entered. We enforced a ⇠5 minute break between the 
conditions to avoid the e�ect of fatigue. We enabled participants to 
practice with the methods by entering �ve phrases with each tech-
nique before the corresponding condition. These phrases were not 
repeated in the main study. After the study, participants completed 
a custom questionnaire to rate the performance of the methods. 
They also took part in a brief interview session to discuss their 
experience in the study. 

7.4 Results 
7.4.1 Entry Speed. An ANOVA failed to identify a signi�cant e�ect 
of method on entry speed (�1,9 = 0.28, ? = .61). On average slide-
force and slide-force-slide yielded 4.3 wpm (SD = 1.0) and 4.2 wpm 
(SD = 0.7), respectively (Fig. 9a). However, there was a signi�cant 
e�ect of block (�4,9 = 30.12, ? < .0001). Fig. 9b illustrates average 
entry speed of the two methods across all blocks. 

7.4.2 Error Rate. An ANOVA failed to identify a signi�cant ef-
fect of method on error rate (�1,9 = 0.86, ? = .38). On average SF 
and SFS yielded 2.2% (SD = 4.5) and 1.7% (SD = 3.7) error rates, 
respectively (Fig. 9c). There was also no signi�cant e�ect of block 
(�4,9 = 1.39, ? = .26). 

7.4.3 User Feedback. A Wilcoxon Signed-Rank test failed to iden-
tify signi�cant e�ects of method on perceived speed (I = �0.14, ? = 
.89), accuracy (I = �1.26, ? = .21), learnability (I = �1.29, ? = .20), 
ease-of-use (I = �1.0, ? = .32), functionality of the features (I = 
0, ? = 1.0), con�dence in using the methods (I = �0.33, ? = .74), 
and willingness to use the methods on their smartwatches (I = 
�0.21, ? = .83). Fig. 10c illustrates average user ratings of the two 
methods. 

7.5 Discussion 
Entry speed of the two methods were comparable. Besides, the 4.3 
wpm is much lower than the performance of the existing character-
level methods, which were reported to yield between a 4.3 and 19.6 
wpm entry speed [3]. These methods, however, used much larger 
keys by occupying up to 85% of the screen [27] and/or evaluated 
in longer sessions and on much larger smartwatches. It is also 
important to note that, we observed a signi�cant e�ect of block 
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(a) Entry speed (wpm) (b) Entry speed (wpm) per block (c) Error rate (%) 

Figure 9: (a) Average entry speed (wpm) of the two methods, (b) average entry speed (wpm) across all blocks �tted to power 
trendlines, (c) average error rate (%) of the two methods. Error bars represent ±1 standard deviation (SD). 

on entry speed. Words per minute with both techniques improved 
substantially in the last block compared to the �rst (17% and 23% 
improvements with slide-force and slide-force-slide, respectively). 
A post-hoc Tukey-Kramer test identi�ed these di�erences to be 
statistically signi�cant. Fig. 9b illustrates average entry speed of the 
two methods in all blocks �tted to power trendlines, where one can 
see that both slide-force ('2 = 0.98) and slide-force-slide ('2 = 0.83) 
correlated well with the power law of practice [9]. These suggest 
that learning occurred with both methods even in the short duration 
of the study, thus possible that performance with the methods will 
improve further with practice. Many participants also felt that their 
performance improved with practice. One participant (male, 30 
years) commented, “It took some time to get to used to it, but after 
that it was easy to use.” There was no signi�cant e�ect of method on 
error rate. Both methods were fairly accurate with about 2% error 
rate, which is much lower than the 5–28% error rate reported for the 
existing character-level methods for smartwatches [3]. Participants 
were mostly indi�erent about the two methods in the post-study 
questionnaire (Fig. 10c). However, we noticed that participants were 
split about which method they preferred the most. One participant 
(female, 29 years) commented, “The split-force-split was the fastest 

for me to use even through I hadn’t used it before.”, while another 
(male, 34 years) said, “To sum up, slide-force is the best way to type for 
me.” However, many participants found both methods di�cult to 
learn. One participant (female, 24 years) commented, “They [both] 
are quite hard to control how much force need to push when choose the 
letters.” These results suggest that while the keyboards may not be 
appropriate as the primary method of text entry on smartwatches, 
these could be used as extensions to the primary input method 
(which are predominantly predictive with aggressive correction 
model, thus do not always enable out-of-vocabulary word entry 
[27]) for non-dictionary word entry or to enter short phrases (e.g., 
short response to a text message). Most importantly, the fact that 
force input prevailed even in an extreme scenario like text entry 
indicate that it can be e�ectively used an active mode of interaction 
on smaller devices. 

8 CONCLUSION 
In this work, we investigated the possibility of using contact force 
as an active mode of interaction on smartwatches, especially to 
enable the selection of smaller targets. We presented the results of 
three user studies. The �rst identi�ed the most comfortable range 

(a) Slide-Force (b) Slide-Force-Slide (c) Average user ratings 

Figure 10: A participant entering text with (a) slide-force and (b) slide-force-slide keyboards, and (c) average user ratings of the 
two methods on a 5-point Likert scale (1–5: low–high). Error bars represent ±1 standard deviation (SD). 
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of force users can apply on smartwatches. The second revealed 
that force input is signi�cantly more e�ective in selecting smaller 
targets than touch. Finally, the third study demonstrated that force 
could be e�ectively used in practical scenarios by developing and 
comparing two new force-based character-level text entry tech-
niques. In addition to the means for demonstrating force input’s 
e�ectiveness, we see these keyboards as independent contributions 
as they have much smaller footprints than the existing character-
level methods and users were relatively fast at learning these. We 
envision these keyboards being used as extensions to predictive 
keyboards that disable out-of-vocabulary word entry due to their 
aggressive correction models, to enable the entry of occasional 
non-dictionary words. 

9 FUTURE WORK 
One limitation of the work is the studies reported here were con-
ducted on simulated smartwatch interfaces on a smartphone. While 
this is fairly common in the literature [10, 18, 23, 26, 29], due to 
the absence of empirical evidence, it is unclear if the performance 
recorded on a simulated smartwatch is generalizable to actual smart-
watches. In the future, we will explore di�erent control-display 
mapping functions for force input. We will also use machine learn-
ing approaches to make the method more reliable. We also hope to 
evaluate the new keyboards in longitudinal studies and augment 
them with predictive systems for faster text entry. 

REFERENCES 
[1] Youngseok Ahn, Sungjae Hwang, HyunGook Yoon, Junghyeon Gim, and Jung-

hee Ryu. 2015. BandSense: Pressure-Sensitive Multi-Touch Interaction on a 
Wristband. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts 
on Human Factors in Computing Systems (CHI EA ’15). ACM, New York, NY, USA, 
251–254. https://doi.org/10.1145/2702613.2725441 event-place: Seoul, Republic 
of Korea. 

[2] Ahmed Sabbir Arif, Mauricio Herrera López, and Wolfgang Stuerzlinger. 2010. 
Two New Mobile Touchscreen Text Entry Techniques. In Poster at the 36th Graph-
ics Interface Conference (GI ’10). CEUR-WS.org/Vol-588, Toronto, ON, Canada, 
22–23. 

[3] Ahmed Sabbir Arif and Ali Mazalek. 2016. A Survey of Text Entry Techniques 
for Smartwatches. In Human-Computer Interaction. Interaction Platforms and 
Techniques, Masaaki Kurosu (Ed.). Vol. 9732. Springer International Publishing, 
Cham, 255–267. https://doi.org/10.1007/978-3-319-39516-6_24 Series Title: 
Lecture Notes in Computer Science. 

[4] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2009. Analysis of Text Entry 
Performance Metrics. In 2009 IEEE Toronto International Conference Science and 
Technology for Humanity (TIC-STH). IEEE, Washington, DC, USA, 100–105. https: 
//doi.org/10.1109/TIC-STH.2009.5444533 

[5] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2013. Evaluation of a New Error 
Prevention Technique for Mobile Touchscreen Text Entry. In Proceedings of the 
25th Australian Computer-Human Interaction Conference: Augmentation, Applica-
tion, Innovation, Collaboration (OzCHI ’13). Association for Computing Machinery, 
New York, NY, USA, 397–400. https://doi.org/10.1145/2541016.2541063 

[6] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2013. Pseudo-Pressure Detection 
and Its Use in Predictive Text Entry on Touchscreens. In Proceedings of the 25th 
Australian Computer-Human Interaction Conference: Augmentation, Application, 
Innovation, Collaboration (OzCHI ’13). ACM, New York, NY, USA, 383–392. https: 
//doi.org/10.1145/2541016.2541024 event-place: Adelaide, Australia. 

[7] Dieter Bohn. 2015. Here’s what 3D Touch can do on the iPhone 6S. https: 
//www.theverge.com/2015/9/22/9370739/3d-touch-features-iphone-6s 

[8] Stephen A. Brewster and Michael Hughes. 2009. Pressure-Based Text Entry for 
Mobile Devices. In Proceedings of the 11th International Conference on Human-
Computer Interaction with Mobile Devices and Services (MobileHCI ’09). ACM, New 
York, NY, USA, 9:1–9:4. https://doi.org/10.1145/1613858.1613870 event-place: 
Bonn, Germany. 

[9] Stuart K. Card, Allen Newell, and Thomas P. Moran. 2000. The Psychology of 
Human-Computer Interaction. L. Erlbaum Associates Inc., USA. 

[10] Xiang ’Anthony’ Chen, Tovi Grossman, and George Fitzmaurice. 2014. 
Swipeboard: A Text Entry Technique for Ultra-Small Interfaces That Supports 

Novice to Expert Transitions. In Proceedings of the 27th Annual Acm Symposium 
on User Interface Software and Technology (UIST ’14). ACM, New York, NY, USA, 
615–620. https://doi.org/10.1145/2642918.2647354 

[11] Rajkumar Darbar, Prasanta Kr Sen, and Debasis Samanta. 2016. Presstact: Side 
Pressure-Based Input for Smartwatch Interaction. In Proceedings of the 2016 CHI 
Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA 
’16). ACM, New York, NY, USA, 2431–2438. https://doi.org/10.1145/2851581. 
2892436 event-place: San Jose, California, USA. 

[12] Kiyotaka Hara, Takeshi Umezawa, and Noritaka Osawa. 2015. E�ect of Button 
Size and Location When Pointing with Index Finger on Smartwatch. In Human-
Computer Interaction: Interaction Technologies (Lecture Notes in Computer Science), 
Masaaki Kurosu (Ed.). Springer International Publishing, Cham, 165–174. https: 
//doi.org/10.1007/978-3-319-20916-6_16 

[13] Aurora Harley. 2019. Touch Targets on Touchscreens. https://www.nngroup. 
com/articles/touch-target-size/ 

[14] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (Oct. 
2006), 904–908. https://doi.org/10.1177/154193120605000909 Publisher: SAGE 
Publications Inc. 

[15] Android Accessibility Help. 2022. Touch Target Size - Android Accessibility Help. 
https://support.google.com/accessibility/android/answer/7101858?hl=en 

[16] Apple Inc. 2022. Buttons - Menus and actions - Components - Human Interface 
Guidelines - Design - Apple Developer. https://developer.apple.com/design/ 
human-interface-guidelines/components/menus-and-actions/buttons/ 

[17] International Organization for Standardization. 2012. ISO/TS 9241-
411:2012. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/ 
standard/05/41/54106.html 

[18] Akira Ishii and Buntarou Shizuki. 2016. Exploring Callout Design in Selection 
Task for Ultra-Small Touch Screen Devices. In Proceedings of the 28th Australian 
Conference on Computer-Human Interaction (OzCHI ’16). Association for Comput-
ing Machinery, New York, NY, USA, 426–434. https://doi.org/10.1145/3010915. 
3010922 

[19] Christina L. James and Kelly M. Reischel. 2001. Text Input for Mobile Devices: 
Comparing Model Prediction to Actual Performance. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems (CHI ’01). Association for 
Computing Machinery, New York, NY, USA, 365–371. https://doi.org/10.1145/ 
365024.365300 

[20] Tomonari Kamba, Shawn A. Elson, Terry Harpold, Tim Stamper, and Piyawadee 
Sukaviriya. 1996. Using Small Screen Space More E�ciently. In Proceedings of 
the SIGCHI conference on Human factors in computing systems common ground 
- CHI ’96. ACM Press, Vancouver, British Columbia, Canada, 383–390. https: 
//doi.org/10.1145/238386.238582 

[21] Hiroki Kurosawa, Daisuke Sakamoto, and Tetsuo Ono. 2018. MyoTilt: A Target 
Selection Method for Smartwatches Using the Tilting Operation and Electromyo-
graphy. In Proceedings of the 20th International Conference on Human-Computer 
Interaction with Mobile Devices and Services (MobileHCI ’18). Association for Com-
puting Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3229434. 
3229457 

[22] Paul Lamkin. 2018. Smart Wearables Market to Double by 2022: $27 Billion 
Industry Forecast. https://www.forbes.com/sites/paullamkin/2018/10/23/smart-
wearables-market-to-double-by-2022-27-billion-industry-forecast/?sh= 
2a1c63442656 Link to the article. 

[23] Luis A. Leiva, Alireza Sahami, Alejandro Catala, Niels Henze, and Albrecht 
Schmidt. 2015. Text Entry on Tiny QWERTY Soft Keyboards. In Proceedings 
of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 
Association for Computing Machinery, New York, NY, USA, 669–678. https: 
//doi.org/10.1145/2702123.2702388 

[24] I. Scott MacKenzie. 2018. Fitts’ Law. In The Wiley Handbook of Human Computer 
Interaction. John Wiley & Sons, Ltd, Hoboken, NJ, USA, 347–370. https://doi. 
org/10.1002/9781118976005.ch17 

[25] David C. McCallum, Edward Mak, Pourang Irani, and Sriram Subramanian. 2009. 
PressureText: Pressure Input for Mobile Phone Text Entry. In CHI ’09 Extended 
Abstracts on Human Factors in Computing Systems (CHI EA ’09). Association for 
Computing Machinery, New York, NY, USA, 4519–4524. https://doi.org/10.1145/ 
1520340.1520693 

[26] Stephen Oney, Chris Harrison, Amy Ogan, and Jason Wiese. 2013. ZoomBoard: 
A Diminutive Qwerty Soft Keyboard Using Iterative Zooming for Ultra-Small 
Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (CHI ’13). ACM, New York, NY, USA, 2799–2802. https://doi.org/10. 
1145/2470654.2481387 event-place: Paris, France. 

[27] Gulnar Rakhmetulla and Ahmed Sabbir Arif. 2021. SwipeRing: Gesture Typing 
on Smartwatches Using a Segmented QWERTY Around the Bezel. In Proceedings 
of Graphics Interface 2021 (GI 2021). Canadian Information Processing Society, 
Toronto, ON, Canada, 166 – 177. https://doi.org/10.20380/GI2021.19 ISSN: 0713-
5424 event-place: Virtual Event. 

[28] Gulnar Rakhmetulla, Ahmed Sabbir Arif, Steven J. Castellucci, I. Scott MacKenzie, 
and Caitlyn E. Seim. 2021. Using Action-Level Metrics to Report the Performance 
of Multi-Step Keyboards. In Proceedings of Graphics Interface 2021 (GI 2021). 

https://doi.org/10.1145/2702613.2725441
https://doi.org/10.1007/978-3-319-39516-6_24
https://doi.org/10.1109/TIC-STH.2009.5444533
https://doi.org/10.1109/TIC-STH.2009.5444533
https://doi.org/10.1145/2541016.2541063
https://doi.org/10.1145/2541016.2541024
https://doi.org/10.1145/2541016.2541024
https://www.theverge.com/2015/9/22/9370739/3d-touch-features-iphone-6s
https://www.theverge.com/2015/9/22/9370739/3d-touch-features-iphone-6s
https://doi.org/10.1145/1613858.1613870
https://doi.org/10.1145/2642918.2647354
https://doi.org/10.1145/2851581.2892436
https://doi.org/10.1145/2851581.2892436
https://doi.org/10.1007/978-3-319-20916-6_16
https://doi.org/10.1007/978-3-319-20916-6_16
https://www.nngroup.com/articles/touch-target-size/
https://www.nngroup.com/articles/touch-target-size/
https://doi.org/10.1177/154193120605000909
https://support.google.com/accessibility/android/answer/7101858?hl=en
https://developer.apple.com/design/human-interface-guidelines/components/menus-and-actions/buttons/
https://developer.apple.com/design/human-interface-guidelines/components/menus-and-actions/buttons/
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/41/54106.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/41/54106.html
https://doi.org/10.1145/3010915.3010922
https://doi.org/10.1145/3010915.3010922
https://doi.org/10.1145/365024.365300
https://doi.org/10.1145/365024.365300
https://doi.org/10.1145/238386.238582
https://doi.org/10.1145/238386.238582
https://doi.org/10.1145/3229434.3229457
https://doi.org/10.1145/3229434.3229457
https://www.forbes.com/sites/paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-billion-industry-forecast/?sh=2a1c63442656
https://www.forbes.com/sites/paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-billion-industry-forecast/?sh=2a1c63442656
https://www.forbes.com/sites/paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-billion-industry-forecast/?sh=2a1c63442656
https://www.forbes.com/sites/paullamkin/2018/10/23/smart-wearables-market-to-double-by-2022-27-billion-industry-forecast/
https://doi.org/10.1145/2702123.2702388
https://doi.org/10.1145/2702123.2702388
https://doi.org/10.1002/9781118976005.ch17
https://doi.org/10.1002/9781118976005.ch17
https://doi.org/10.1145/1520340.1520693
https://doi.org/10.1145/1520340.1520693
https://doi.org/10.1145/2470654.2481387
https://doi.org/10.1145/2470654.2481387
https://doi.org/10.20380/GI2021.19
https://CEUR-WS.org/Vol-588


TEI ’23, February 26-March 1, 2023, Warsaw, Poland 

Canadian Information Processing Society, Toronto, ON, Canada, 127 – 137. https: 
//doi.org/10.20380/GI2021.15 ISSN: 0713-5424 event-place: Virtual Event. 

[29] Yuan Ren and Ahmed Sabbir Arif. 2021. Stepper, Swipe, Tilt, Force: Comparative 
Evaluation of Four Number Pickers for Smartwatches. Proceedings of the ACM 
on Human-Computer Interaction 5, ISS (Nov. 2021), 500:1–500:21. https://doi.org/ 
10.1145/3488545 

[30] R. William Soukore� and I. Scott MacKenzie. 2004. Towards a Standard for 
Pointing Device Evaluation, Perspectives on 27 Years of Fitts’ Law Research in 
HCI. International Journal of Human-Computer Studies 61, 6 (Dec. 2004), 751–789. 
https://doi.org/10.1016/j.ijhcs.2004.09.001 

[31] HUI Tang, DAVID J. Beebe, and ARTHUR F. Kramer. 2001. A Multilevel Input 
System with Force-Sensitive Elements. International Journal of Human-Computer 
Studies 54, 4 (April 2001), 495–507. https://doi.org/10.1006/ijhc.2000.0451 

[32] Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage, Robbie Watling, 
and Per Ola Kristensson. 2019. VelociWatch: Designing and Evaluating a Virtual 
Keyboard for the Input of Challenging Text. In Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems (CHI ’19). ACM, New York, NY, 
USA, 1–14. https://doi.org/10.1145/3290605.3300821 Paper 591. 

[33] Keith Vertanen and Per Ola Kristensson. 2011. A Versatile Dataset for Text 
Entry Evaluations Based on Genuine Mobile Emails. In Proceedings of the 13th 
International Conference on Human Computer Interaction with Mobile Devices and 
Services (MobileHCI ’11). Association for Computing Machinery, New York, NY, 
USA, 295–298. https://doi.org/10.1145/2037373.2037418 

Yuan Ren and Ahmed Sabbir Arif 

[34] Daniel Vogel and Patrick Baudisch. 2007. Shift: A Technique for Operating Pen-
Based Interfaces Using Touch. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems (CHI ’07). ACM, New York, NY, USA, 657–666. 
https://doi.org/10.1145/1240624.1240727 event-place: San Jose, California, USA. 

[35] Haijun Xia, Tovi Grossman, and George Fitzmaurice. 2015. NanoStylus: Enhanc-
ing Input on Ultra-Small Displays with a Finger-Mounted Stylus. In Proceedings 
of the 28th Annual ACM Symposium on User Interface Software & Technology 
(UIST ’15). Association for Computing Machinery, New York, NY, USA, 447–456. 
https://doi.org/10.1145/2807442.2807500 

[36] Hui-Shyong Yeo, Juyoung Lee, Andrea Bianchi, and Aaron Quigley. 2016. 
WatchMI: Pressure Touch, Twist and Pan Gesture Input on Unmodi�ed Smart-
watches. In Proceedings of the 18th International Conference on Human-Computer 
Interaction with Mobile Devices and Services (MobileHCI ’16). ACM, New York, NY, 
USA, 394–399. https://doi.org/10.1145/2935334.2935375 event-place: Florence, 
Italy. 

[37] Xin Yi, Chun Yu, Weinan Shi, and Yuanchun Shi. 2017. Is It Too Small?: Investi-
gating the Performances and Preferences of Users When Typing on Tiny Qwerty 
Keyboards. International Journal of Human-Computer Studies 106 (Oct. 2017), 
44–62. https://doi.org/10.1016/j.ijhcs.2017.05.001 

[38] Mingyuan Zhong, Chun Yu, Qian Wang, Xuhai Xu, and Yuanchun Shi. 2018. 
ForceBoard: Subtle Text Entry Leveraging Pressure. In Proceedings of the 2018 
CHI Conference on Human Factors in Computing Systems (CHI ’18). Association 
for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/ 
3173574.3174102 

https://doi.org/10.20380/GI2021.15
https://doi.org/10.20380/GI2021.15
https://doi.org/10.1145/3488545
https://doi.org/10.1145/3488545
https://doi.org/10.1016/j.ijhcs.2004.09.001
https://doi.org/10.1006/ijhc.2000.0451
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/2037373.2037418
https://doi.org/10.1145/1240624.1240727
https://doi.org/10.1145/2807442.2807500
https://doi.org/10.1145/2935334.2935375
https://doi.org/10.1016/j.ijhcs.2017.05.001
https://doi.org/10.1145/3173574.3174102
https://doi.org/10.1145/3173574.3174102

	Abstract
	1 Introduction
	2 Related Work
	3 User Study 1: Levels of Force
	3.1 Participants
	3.2 Apparatus
	3.3 Design & Procedure
	3.4 Results & Discussion

	4 1D Fitts' Law Protocol
	5 User Study 2: 1D Fitts' Law Study
	5.1 Participants
	5.2 Apparatus & Design
	5.3 Procedure
	5.4 Results
	5.5 Discussion

	6 Slice Keyboards
	7 User Study 3: Slide-Force v. Slide-Force-Slide
	7.1 Participants
	7.2 Apparatus & Design
	7.3 Procedure
	7.4 Results
	7.5 Discussion

	8 Conclusion
	9 Future Work
	References

