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Stepper, Swipe, Tilt, Force: Comparative Evaluation of Four
Number Pickers for Smartwatches

YUAN REN and AHMED SABBIR ARIF,Human-Computer Interaction Group, University of California,
Merced, United States

Fig. 1. The four number pickers investigated in this work, from left: input stepper (the default number picker
on most smartwatches), swipe (in this figure, the user is swiping down to decrease a value), tilt (in this figure,
the user is tilting up to increase a value), and force (in this figure, the user is variating contact force to change
a value). Unlike the default input stepper, the new methods do not display numeric values in full-screen when
selected, instead display a magnifier window to display the value changing (see the last image).

Picking numbers is arguably the most frequently performed input task on smartwatches. This paper presents
three new methods for picking numbers on smartwatches by performing directional swipes, twisting the
wrist, and varying contact force on the screen. Unlike the default number picker, the proposed methods enable
users to actively switch between slow-and-steady and fast-and-continuous increments and decrements during
the input process. We evaluated these methods in two user studies. The first compared the new methods
with the default input stepper method in both stationary and mobile settings. The second compared them for
individual numeric values and values embedded in text. In both studies, swipe yielded a significantly faster
input rate. Participants also found the method faster, more accurate, and the least mentally and physically
demanding compared to the other methods. Accuracy rates were comparable between the methods.
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1 INTRODUCTION
Smartwatches are becoming increasingly popular among mobile users. A recent survey reported
that roughly one-in-five U.S. adults (21%) regularly wear a smartwatch or a fitness tracker [66]. Yet,
interaction with these devices is mostly limited to receiving notifications on emails, text messages,
and social media activities [13]. This is primarily due to the smaller screen sizes of smartwatches,
which limits the types of actions users can perform on these devices. Text entry on these devices
is particularly difficult as most existing text entry methods use miniature keys that are difficult
to select, causing frequent errors [6]. Some methods also use multi-step approaches, where users
have to perform a sequence of actions to input one character. Due to these challenges in text
entry, number picking is arguably the most frequent input task performed on smartwatches. For
illustrative purposes, current Apple smartwatches come with 40 pre-installed apps1, of which
four partially support alphanumeric text and emoticon entry, eight support number entry using a
number picker, and the remaining 28 are only for acquiring and viewing information.
Unlike traditional input methods, with which users enter one digit of a number at a time (such

as a virtual keyboard), number pickers display a default value on the screen and enable users to
pick a different number either from a list or by increasing or decreasing the default value using a
two-segment control. The default number picker on most smartwatches is “input stepper”. It uses a
spinning number wheel metaphor, where flicking up on the screen spins the wheel to increase the
value and spinning the wheel by a down flick decreases the value. Faster flicks spin the wheel faster
and vice versa. Once flicked, the wheel keeps on spinning for some time, gradually slowing down
to a full stop. Thus, repeated flicks are needed for continuous spinning of the wheel. Input stepper
is also the default number picker on most smartphones. However, on smartphones, this method is
used by a select number of apps (i.e., the clock) since the dominant method for entering numeric
and other characters on these devices is virtual keyboards, while on smartwatches it is used almost
exclusively to enter numbers. Section 3.1 describes this method. There are several limitations of
this method. First, it does not usually enable editing inline values (numbers embedded in text,
e.g., “12:30” in “let’s meet at 12:30 pm” ). Even when it does, it displays the spinner in full-screen,
forcing users to take their attention away from the details on the screen that may include important
details about the target number (e.g., available time slots for a meeting). Second, this method is
impractical when the difference between the default and the intended values is very large (e.g., when
changing “$50 daily” to “$1,500 monthly” ) as it requires repetitive flicks, which can be physically
and mentally challenging. Yet, to the best of our knowledge, no prior works studied number pickers
on smartwatches or proposed alternatives to the default number picker.
In this paper, we develop three new number pickers in a rigorous design process. We then

compare the performance of these methods with the default method in two empirical studies: one
comparing their performance in stationary and mobile settings and another with individual and
inline numeric values. The remainder of the paper is organized as follows. First, we review the
existing works in the area. We then describe the default number picker and introduce the proposed
number pickers. We discuss the design considerations for the new methods. We then present the
findings of two user studies comparing the four number pickers. Finally, we conclude by reflecting
on future extensions of the work.

2 RELATEDWORK
Numerous works have explored swipe-based, tilt-based, and force-based input and interaction
methods for larger touchscreen-based devices like interactive tabletops and walls [37, 56], tablets
[30, 67], and smartphones [2, 15, 17, 22, 23, 59, 61–63]. However, these alternative interaction

1Apps on Apple Watch, https://support.apple.com/en-gb/guide/watch/apdf1ebf8704/watchos
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methods have not been well explored in the context of smartwatches. Interaction with smartwatches
is fundamentally different from these devices as not only they are smaller in size but also have
different holding and usage patterns. Unlike other touchscreen-based devices, smartwatches are
worn on the wrist, which limits its interaction space as users cannot use the fingers of the watch-
hand to interact with the device.

There has been an increased interest in text entry methods for smartwatches. Majority of these
methods are miniature versions of the standard Qwerty layout that enable users to increase the
size of the keys by either tapping or flicking on the screen [18, 38, 57]. There are also alternative
miniature layouts that map the English alphabet to a fewer number of keys than Qwerty, then
disambiguate the input using a language model [34, 42]. Two recent methods, WatchWriter [32]
and SwipeRing [60], enable users to enter text by connecting the keys or the zones containing the
letters of the intended word on the screen. Another method, WrisText [31], enables connecting the
zones by whirling the wrist of the watch-hand in joystick-like motions. However, these methods
use language models to disambiguate the input, and do not offer effective mechanisms for entering
numeric values. Arif and Mazalek [6] provide a comprehensive review of the existing text entry
methods for smartwatches.

Some have used smartwatches to control other systems. Duet enables controlling a smartphone
using the spatial configuration of a smartwatch [19]. Users can tap and swipe on the smartwatch
and perform wrist gestures to interact with a smartphone. Likewise, MultiFi lets users use extended
widgets on a smartwatch in augmented/mixed reality, where users select a menu item by either
tapping on the screen or pointing at the item. Some have also used smartwatches as active tangible
in tangible-tabletop systems [33]. Actible [29], for example, augments a smartwatch with custom
hardware to enable an expanded set of tangible interactions on interactive tabletops, including
shaking, tilting, stacking, neighboring, and on-screen gestures [5, 25, 51]. These methods, however,
were designed keeping interaction with other systems in mind, thus are not suitable for interacting
with the smartwatches. Besides, the smartwatch-based active tangibles are usually used on a tabletop,
not worn on the wrist. A different line of research exploits the accelerometer and gyroscope sensors
of smartwatches [68, 69] or external sensors (e.g., infrared sensors [41, 43] and chest-mounted
camera [49]) to track hand and finger movements. These works, however, are outside the scope of
this research.

A few works have also explored tilt-based and force-based interaction methods on smartwatches.
Dunlop et al. [27] propose a semi-transparent interface for switching between a full-screen Qwerty
and a full-screen text input area by tilting the wrist. An evaluation found the method to be more
error-prone than a conventional method. Kurosawa et al. [45] use a tilt and force hybrid method
for target selection on a smartwatch. This method uses an electromyography sensor on the arm to
detect tilting of the device. To select a target, users first tilt the hand to indicate the cursor direction,
then apply force on the arm to move the cursor to the target. A similar work [24] augments a
smartwatch with four pressure sensors: two on the left and two on the right side of the watch. It
enables users to apply different levels of force on the two sides of the device for zooming, scrolling,
and rotating an interactive map. Ahn et al. [1], in contrast, use a pressure-sensitive wristband to
perform similar interactions. These methods require extramural hardware to function. Besides, the
former method yielded a much slower task completion time compared to a conventional method in
a user study, while the latter two were not compared with the state-of-the-art.
In a different work, Mo and Zhou [54] investigated the interrelationship between smartwatch

interaction methods (tapping, swiping, and wrist flicking) and users’ movements (standing, strolling,
walking, rushing, and jogging) and gait features. Results revealed that both smaller target sizes
and interaction on the move decrease the effectiveness and efficiency of tapping. Besides, tapping,
swiping, or wrist flicking on the go reduces users’ gait symmetry and step length. A similar study
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[40] investigated the fatigue caused by different poses, such as sitting with the arm rested, standing
with the arm raised, etc., when selecting targets using pointing, dwelling, and swipes. Results
showed that the standing position leads to a massive increase in exertion than sitting.

To the best of our knowledge, no prior work developed or compared swipe-based, tilt-based, and
force-based interaction methods on a smartwatch, especially in the context of number entry.

Table 1. Actions associated with the four number pickers.

Method Increment Decrement Acceleration
Rate

Continuous
Spinning

Input Stepper Flick up Flick down Pace of flick Repetitive flicks
Swipe-Based Swipe up Swipe down Length of swipe Swipe and hold
Tilt-Based Tilt the wrist up Tilt the wrist down Angle of tilt Tilt and hold
Force-Based Increase contact force Decrease contact force Level of force Hold contact force

3 THE FOUR NUMBER PICKERS
This section presents the default input stepper and the new swipe-based, tilt-based, and force-based
number pickers. The design of the new methods were refined in iterative design steps. Table 1
summarizes the functionality of the four methods. In addition, these methods share the following
behaviors.

• Selection. All methods enable selecting a numeric value for increment or decrement by
tapping on it. When the selected value is embedded in text (inline values), the input stepper
displays a full-screen virtual number wheel containing all legal values, which is the default
behavior on most smartwatches. The swipe-based, tilt-based, and force-based methods, in
contrast, do not display the number wheel in full-screen, instead change the value directly in
the text. For conjoint values (i.e., multiple numbers connected with infixes), the input stepper
displays one number wheel per segment. For example, for the time value “12:30:44”, it displays
three wheels, one for each segment, which is the default behavior on most smartwatches.
With the new methods, however, users individually tap on the three parts of the value to
change the respective parts.

• Continuous Spinning. The new methods enable continuous spinning of the number wheel
with a single action for faster increment and decrement when the difference between the
current and the intended value is large (e.g., changing “110” to “250”). The default input
stepper does not provide the support for this, rather requires users to repeatedly flick on the
screen for continuous spinning of the wheel. This feature is further discussed in Sections 3.1.

• Auditory Feedback. All four methods provide auditory feedback on spinning the number
wheel (a spinning wheel sound, like the default Apple iOS input stepper).

• Visual Feedback. Since the new methods do not switch to a full-screen mode when users
select a numeric value embedded in text, they provide additional visual feedback to assure that
users can see the value changing when their finger occludes the embedded value. Particularly,
these methods display a magnifier window further from the finger (Fig. 1).

For the design and development, we simulated an Apple Watch 5 on an Apple iPhone X, where
only the smartwatch display was active (Section 4.1 provides further details). We could not use an
actual smartwatch since current smartwatches do not provide the support for continuous force
detection. Apple Watch 5 includes a force sensor that can only “distinguish between a light tap and
a deep press” [28]. We optimized all methods for the simulated smartwatch for a fair comparison
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between them. It is relatively common to use smartphones or tablets to study interactions with
smartwatches due to technological limitations of current smartwatches (e.g., [18, 46, 57]).

Fig. 2. Input stepper is the default number picker on most smartwatches: it displays a full-screen number
wheel that users spin by flicking up or down to increment or decrement a numeric value, respectively.

3.1 Input Stepper
Input stepper is the default number picker on most smartwatches (Fig. 2). However, different mobile
operating systems use different names to refer to this method, such as Spinner and Spinning wheel.
When users tap on a numeric value, it displays a full-screen virtual number wheel containing all
legal values. Spinning the wheel by flicking up on the screen increases the value and spinning
the wheel by flicking down decreases the value2. The pace of the increment and decrement is
determined based on how fast users flick on the screen. Faster flicks rotate the wheel faster and
slower flicks rotate the wheel slower. When the desired number is displayed, users pick it by tapping
on it. Continuous spinning is not fully supported by the default method. Once flicked, the wheel
keeps on spinning for some time, gradually slowing down to a full stop. Hence, repeated flicks are
needed for continuous spinning of the wheel. We implemented this method using the default iOS
SDK control library3, without any customization.

Fig. 3. Swipe-based number picker: the user swipes up to increment and swipes down to decrement a numeric
value.

3.2 Swipe-Based Picker
The swipe-based picker enables users to pick numbers by performing swipes (Fig. 3). Tapping on a
numeric value activates an invisible number wheel containing all legal values. Users then swipe up
or down on the screen to increment or decrement the value, respectively. One difference between
2Some smartwatches use a reversed mapping, where spinning the wheel by flicking up decreases the value and spinning
the wheel by flicking down increases the value. We decided against using this mapping to maintain interaction consistency
between the four examined number pickers.
3Apple Developer, Pickers - Controls - iOS - Human Interface Guidelines, https://developer.apple.com/design/human-
interface-guidelines/ios/controls/pickers.
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the default input stepper and swipe is: with the former, users perform a short quick flick, while
with the latter, users perform a steady swipe. A single swipe changes the value by one unit. Users
can activate continuous spinning of the number wheel by stroking and holding the swipe for 850
milliseconds. Lifting the finger deactivates continuous spinning. The pace of a spin is determined
based on the length of the swipe. Holding a long swipe increases or decreases the value faster,
while holding a short swipe increases or decreases the value slowly. This enables users to actively
pick a change rate appropriate for the task. Based on the findings of a pilot study (N = 12, M = 26.0
years) investigating various custom and commonly used functions [14, 20] for mapping control
movements to the movements of a display object, referred to as the control-display (CD) gain, we
used the following function to determine the pace of a spin.

𝑡 (𝑙) = 1
2
×
(
1 − 𝑙

ℎ

)3
(1)

Where 𝑡 (𝑙) is the pace of a spin relative to the length of a swipe 𝑙 in pixels, and ℎ is the height of
the active smartwatch touchscreen in pixels. Note that we also considered a temporal approach to
determine the pace of a spin, where the pace increases in proportion to the duration of a swipe-hold
(the wheel keeps on spinning faster as users continue with holding a swipe). However, it performed
poorly compared to the proposed approach in terms of speed and accuracy in another pilot study
(N = 6, M = 26.0 years). Besides, most participants found the mapping confusing.

Fig. 4. Tilt-based number picker: the user tilts the device away from the body (up) or towards the body (up)
to increment and decrement a numeric value, respectively.

3.3 Tilt-Based Picker
The tilt-based method enables users to pick numbers by tilting their smartwatch towards or away
from their body, interpreted as tilting down and up, respectively (Fig. 4). Tilting the device once
then returning to the initial position changes the value by one unit. For continuous spinning of
the invisible number wheel, users tilt and hold the position for 850 milliseconds. Bringing the
device back to its initial position deactivates continuous spinning. The pace of a spin is determined
based on the angle of the tilt. Tilting the device at a steeper angle increases or decreases the value
faster, while tilting it at a slight angle increases or decreases the value slowly. This enables users to
actively pick a change rate appropriate for the task. First, we conducted a pilot study (N = 6, M =
26.0 years) to explore various custom and commonly used functions for CD gain [14, 20] to map
different tilt angles to different spin pace. Selecting the most effective function was particularly
challenging since tilting the device too much not only caused irritation and fatigue but also made
the text illegible. Hence, based on Dunlop et al’s [27] recommendation, we tested 15◦ ± 9 angle as
a possible range for tilt. However, it was proven to be too sensitive for precise pace section in a
second pilot study (N = 12, M = 27.08 years). Besides, we observed that tilting the device towards
the body is more difficult than tilting away from the body, thus using the same range for the up and
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down tilts is impractical. Based on this, we changed the range and selected the following function
to determine the pace of a spin based on the findings of a third pilot study (N = 12, M = 26.01 years).

𝑡 (𝑎) =

3
5 ×

(
1 − |𝑎−𝑢𝑝_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 |

𝑢𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

)3.2
when tilting up

3
5 ×

(
1 − |𝑎−𝑑𝑜𝑤𝑛_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 |

𝑑𝑜𝑤𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

)3
when tilting down

(2)

Where 𝑡 (𝑎) is the pace of a spin relative to the tilt angle 𝑎, 𝑢𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑑𝑜𝑤𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are
the maximum possible up and down tilts [−40◦, 30◦] based on the anatomy of the human wrist
[48], and 𝑢𝑝_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 and 𝑑𝑜𝑤𝑛_𝑜𝑝𝑡𝑖𝑚𝑎𝑙 are the optimal up and down tilts [−30◦, 20◦] based on
the findings of the pilot studies. Like the swipe-based method, we also tested a temporal approach
to determine the pace of a spin, where holding a tilted position for longer increased the pace of the
spin and vice versa. However, it was significantly slower, more error prone, and caused irritation
and fatigue in the pilot study.

Fig. 5. Force-based number picker: the user applies extra force to increment and soft force to decrement a
numeric value.

3.4 Force-Based Picker
The force-based method enables users to pick numbers by variating contact force on the screen.
Increasing contact force increases the value and decreasing contact force decreases the value (Fig. 5).
The default Apple iOS SDK returns a value between 0 and 6.67 for the amount of force imparted
by the user’s finger onto the screen. We normalized it to the interval from 0 to 1 by dividing the
received force value by the maximum force (6.67). Then, based on the findings of a pilot study
(N = 15, M = 27.7 years), we segmented this range into three force levels: soft (from 0 to 0.15),
regular (from 0.15 to 0.3), and hard (from 0.3 to 1). Initially, we attempted an adaptive approach
that adjusted the levels of force based on users’ typical contact force. However, this method failed
to accurately predict the three levels of force in a pilot study investigating different positions and
posture, including when standing, sitting, and walking (N = 15, M = 23.9 years). It also bothered the
participants that they could not actively control the force levels. Further, it required a substantial
amount of training data for each participant, which can be challenging and often impractical in
real-world scenarios. The fixed range approach used in this work, in contrast, performed well in
prior studies with smartphones [7, 8], as well as in a third pilot study (N = 13, M = 28.46 years).
Participants were able to learn the three levels and replicate those in various settings without any
major difficulties.
With the force-based method, changing the level of force once then returning to the regular

force changes the value by one unit. For continuous spinning of the invisible number wheel, users
change the level of force and hold that level for 850 milliseconds. Changing the level or lifting the
finger deactivates continuous spinning. This method uses a temporal approach to determine the
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pace of a spin in continuous spinning. Holding a specific level of force longer increases or decreases
the value faster at the following rates: 1 digit per 600 milliseconds for 2 seconds, 1 digit per 250
milliseconds for 5 seconds, and 1 digit per 5 milliseconds. This incremental pace rate was selected
based on the findings of a fourth pilot study (N = 6, M = 26.5 years), where users could alter the
contact force to restart the rate, enabling them to actively pick a rate appropriate for a task. To
keep users informed, this method provides haptic feedback on each force level change. That is, the
device vibrates for 200 milliseconds, as recommended by Kaaresoja and Linjama [39]. Since users
do not necessarily have to lift their finger to select a value with this method, once selected, they
could slide their fingers to a different value to edit it.

4 EXPERIMENT 1: SEATED VS. WALKING
We conducted a user study to compare the four number pickers in both stationary and mobile
settings. The study protocol was reviewed and approved by the Institutional Review Board (IRB).
The study was completed before the World Health Organization (WHO) declared the outbreak of
COVID-19 a pandemic.

4.1 Apparatus
We used an iPhone X (43.6×70.9×7.7 mm, 174 grams) running on iOS version 12.1 at 1125×2436
pixels resolution in the user study. We developed a custom app using the default iOS SDK to
simulate an Apple Watch 5’s 740 mm2 display area (312×390 pixels) on the smartphone. We made
the surrounding area of the simulated smartwatch touch-insensitive to avoid the effects of accidental
touches during the study. We used a smartphone instead of an actual smartwatch since existing
smartwatches cannot detect the exact level of force applied on the screen (see Section 3). Apple
Watch detects only the absence and presence of extra force. We used a wristband with silicone phone
holder (55.5 grams) to attach the smartphone to the wrist of the participants like a smartwatch
(Figure 6). The wristband held the device on the wrist firmly, thus participants did not have to hold
it steady with the fingers of the other hand, although we noticed a few participants occasionally
doing that. The holder was 180◦ rotatable but we did not enable participants to rotate the device
during the study to eliminate a potential confound. We used a Fitness Reality TRE5000 electric
treadmill to simulate walking, which is common practice in controlled studies (e.g., [9, 11, 52, 64]).

Fig. 6. The wristband and the device used in the user study.

4.2 Participants
Twelve participants voluntarily took part in the study. None of them participated in the pilot studies.
Their age ranged from 20 to 39 years (M = 25.27, SD = 5.5). Six of them identified themselves as
female and six identified as male. Ten of them were right-handed and two were left-handed. All
right-handed participants chose to wear the device on their left hand and interact with the device
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using the right hand, while all left-handed participants chose to wear it on the right hand and use
the other hand for interaction. They all were experienced smartphone users (M = 8.36 years of
experience, SD = 1.9). Two of them owned a smartwatch (M = 3.0 years of ownership, SD = 2.8).
Four of them also had experience using force as an input modality on Apple iPhone devices (M =
4.6 years of experience, SD = 3.6). They all received U.S. $10 for participating in the study.

4.3 Design
We used a within-subjects design for the study, where the independent variables were setting and
method, and the dependent variables were the following performance metrics.

• Task completion time (seconds) is the average time it took to change one presented value
to the target value.

• Actions per task is the average number of actions, including taps, swipes, tilts, and different
levels of force, performed to change one presented value to the target value.

Besides, participants were asked to complete the following questionnaires.
• A usability questionnaire that asked participants to rate various aspects of the examined
number pickers on a 7-point Likert scale. It included four questions from the SUS questionnaire
[12] and two custom questions. The four questions from SUS were about the willingness
to use when seated and walking (SUS Q#1), ease of use (SUS Q#3), and learnability of the
methods (SUS Q#7). The two custom questions were about the perceived speed and accuracy
of the methods. These questions were used since SUS does not include questions about system
speed or accuracy.

• A perceived workload questionnaire that included three questions from the NASA-TLX
questionnaire [55] about mental demand (NASA-TLX Q#1), physical demand (NASA-TLX
Q#6), and frustration (NASA-TLX Q#6).

We did not use the full SUS and NASA-TLX questionnaires to reduce the time and effort needed
in the study. These questionnaires include 16 questions in total, which would have resulted in
(2 × 4 × 16 =) 128 questions in the study. Hence, we only used the questions that are most relevant
to our investigation. Hart [35], the creator of NASA-TLX, identified using a subset of the questions
as one of the most common usage of the questionnaire and did not discourage it. Leaving some
questions out of the SUS questionnaire is also common [47]. Note that we evaluated each scale
individually rather than calculating a single score per questionnaire to eliminate the possibility of
biases in factor analyses.
Participants were asked to complete both questionnaires upon the completion of the study to

increase the reliability of the data as it enabled them to compare the efforts needed with each
method while rating them. We acknowledge that this increases the chance of the context effect,
which suggests participants tend to rate the latter methods more demanding than the ones they did
earlier. However, Hart [36] found it to be “typical of subjective ratings in general” and argued that it
can be avoided by being “careful to control context effects”, which we did by counterbalancing the
conditions using a balanced Latin square. This assured that participants experienced the methods
in different orders. Prior studies showed it to be an effective approach to mitigate context or order
effect [50, pp. 177–181]. In summary, the design was as follows.

12 participants ×
2 settings (seated and walking, counterbalanced) ×
4 methods (the default stepper, swipe, tilt, and force, counterbalanced) ×
15 random two-digit values between 9 and 100
= 1,440 numeric values in total, excluding practices.
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4.4 Experimental Tasks
During the study, the app presented one numeric value at a time and asked the participants to
change it to a target value using the method under investigation (Fig. 7). Both the presented and
the target values were two-digit numbers between 9 and 100. All tasks were randomly generated
for each participant, making sure that there were equal number of increment and decrement tasks,
and each task had its equal counterpart. That is, the system paired each increment task with an
equivalent decrement task and vice versa, where the presented and target values had the same edit
distance. For example, for a decrement task: change “68” to “43”, there was an equivalent increment
task: change “23” to “48” (68 − 43 = 48 − 23 = 25). We used numbers between 9 and 100 based
on our observation that two-digit numbers, e.g., time (h:m:s), volume (0–100%), etc., are the most
commonly edited numeric values on smartwatches4. Further, it allowed us to constrain each study
session within one hour, reducing any potential effects of fatigue. It also enabled us to evaluate the
new methods with numeric values with which the default input stepper is the most effective. The
default input stepper method is likely to take more time and effort to edit larger numbers (> 100)
as it would require repeatedly flicking on the screen to keep the wheel spinning. While with the
proposed methods, users can continue spinning the wheel without performing additional actions
until the target number is reached.

4.5 Walking Speed and Safety
The treadmill was set on 1.0 mph (∼1.6 km/h) during the walking condition. We selected this rate
based on a prior study that showed that users usually maintain a walking speed between 0.9 and 1.2
mph (1.5 and 2.0 km/h) when using a mobile phone [53]. Appropriate safety measures were taken
during this condition. All participants were asked to attach the treadmill safety key to their clothing
and wear a bike helmet to prevent injuries in case of an unexpected slip, trip, or fall. Besides, there
were mandatory breaks between the conditions to prevent exhaustion for using the treadmill.

Fig. 7. A decrement task (change “66” to “56”) displayed on the study app (left), and two participants taking
part in the study while seated and while walking on a treadmill, respectively (right).

4.6 Procedure
The study was conducted in a quiet room, one participant at a time. Upon arrival, we explained
the research to all participants and collected their consents. They then completed a demographics
and mobile usage questionnaire. The main study started after that. First, we demonstrated the first
method and enabled them to practice with it by performing two increment and two decrement
tasks. They were then asked to perform the experimental tasks (Section 4.4) both when seated and
when walking in a counterbalanced order. They were instructed to perform the tasks as fast as
possible. After successfully completing a task, they tapped on a button outside the smartwatch
4Besides, informal investigations suggest that single- and two-digit numbers are the most frequently used [26] and the most
popular [10].

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. ISS, Article 500. Publication date: November 2021.



Stepper, Swipe, Tilt, Force 500:11

area to see the next task. Once done with all tasks, we demonstrated the second method, enabled
them to practice with it, and asked them to perform the experimental tasks. This process continued
until they experienced all methods. The methods were also introduced in a counterbalanced order.
Upon completion of the study, the participants completed a questionnaire where they rated various
aspects of the four methods on a 7-point Likert scale, and the perceived mental and physical
demands and frustration using the NASA-TLX [55] questionnaire.

4.7 Results
A Shapiro-Wilk test revealed that the response variable residuals are normally distributed. A
Mauchly’s test indicated that the variances of populations are equal. Thus, we used a repeated-
measures ANOVA to analyze the quantitative data. In contrast, we used a Friedman test to analyze
the questionnaire data. We also report effect sizes of all statistically significant results: eta-squared
(𝜂2) for ANOVA and Kendall’s𝑊 for Friedman test [3]. Eta-squared uses Cohen’s interpretation
[21], where 0.01 constitutes a small, 0.06 constitutes a medium, and over 0.14 constitutes a large
effect. Kendall’s𝑊 uses a different interpretation by Cohen [21], where 0.1 constitutes a small, 0.3
constitutes a medium, and over 0.5 constitutes a large effect. There were no significant effects of
the order of conditions on the dependent variables (𝑝 > .8), which suggests that counterbalancing
worked [50, pp. 177–180].

(a) Task completion time (seconds) (b) Actions per task

Fig. 8. Average task completion time and actions per task for all methods in the two settings (stationary and
mobile). Error bars represent ±1 standard deviation (SD).

4.7.1 Task Completion Time. An ANOVA identified a significant effect of method on task com-
pletion time (𝐹3,33 = 23.76, 𝑝 < .000005, 𝜂2 = .07)5. An ANOVA failed to identify a significant
effect of setting (𝐹1,11 = 3.14, 𝑝 = .10). There was also no significant method × setting interaction
effect (𝐹3,33 = 1.17, 𝑝 = .33). A Tukey-Kramer Multiple-Comparison test revealed that swipe was
significantly faster than all other methods. Figure 8a illustrates average task completion time for
the four methods in both settings.

4.7.2 Actions per Task. An ANOVA identified a significant effect of method on actions per task
(𝐹3,33 = 14.71, 𝑝 = .000003, 𝜂2 = .18). An ANOVA also identified a significant effect of setting
(𝐹1,11 = 8.02, 𝑝 = .016, 𝜂2 = .003). However, there was no significant method × setting interaction
effect (𝐹3,33 = 1.28, 𝑝 = .30). A Tukey-Kramer Multiple-Comparison test revealed that stepper and
5The 𝑝 value was too small for the NCSS and SPSS statistical software to display the exact value as they and most other
statistical software display values up to six decimal places.
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tilt required significantly fewer actions per task compared to swipe and force. Figure 8b illustrates
average actions per task for the four methods in both settings.

(a) Usability questionnaire (b) Partial NASA-TLX questionnaire

Fig. 9. Average user ratings of the four methods on a 7-point Likert scale, where “1” to “7” represented
“strongly disagree” to “strongly agree” (left) and on NASA-TLX’s 20-point scale, where “1” to “20” represented
“no demand” to “extreme demand” (right). Error bars represent ±1 standard deviation (SD).

4.8 User Feedback
We used a non-parametric Friedman test to analyze the questionnaire data. Here, we present raw
TLX scores by analyzing the sub-scales individually, which is a common modification made to
NASA-TLX [36]. Note that the evidence is inconclusive about whether raw TLX is more sensitive,
less sensitive, or equally sensitive compared to the original version [36].

4.8.1 Perceived Performance and Preference. A Friedman test identified a significant effect of
method on perceived speed (𝜒2 = 9.31, 𝑑 𝑓 = 3, 𝑝 = .025,𝑊 = .26), perceived accuracy (𝜒2 =

20.40, 𝑑 𝑓 = 3, 𝑝 = .0001,𝑊 = .57), learnability (𝜒2 = 15.61, 𝑑 𝑓 = 3, 𝑝 = .001,𝑊 = .43), ease of use
(𝜒2 = 18.47, 𝑑 𝑓 = 3, 𝑝 = .0003,𝑊 = .51), and willingness to use in both stationary (𝜒2 = 10.07, 𝑑 𝑓 =

3, 𝑝 = .01,𝑊 = .28) and mobile settings (𝜒2 = 12.49, 𝑑 𝑓 = 3, 𝑝 < .006,𝑊 = .35). Participants rated
picker and swipe substantially higher in all aspects compared to tilt and force. Force received the
poorest ratings of all methods. Figure 9a illustrates average user ratings of the four methods.

4.8.2 Mental and Physical Demand. A Friedman test identified a significant effect of method on
mental demand (𝜒2 = 11.65, 𝑑 𝑓 = 3, 𝑝 = .009,𝑊 = .32), physical demand (𝜒2 = 17.88, 𝑑 𝑓 = 3, 𝑝 =

.0004,𝑊 = .5), and frustration (𝜒2 = 19.41, 𝑑 𝑓 = 3, 𝑝 = .0002,𝑊 = .54). Participants found picker
and swipe to be the least mentally and physically demanding compared to tilt and force. They also
found the former methods to be the least frustrating. Force was rated substantially higher in terms
of mental and physical demand, as well as frustration, compared to the other methods. Figure 9b
illustrates average user ratings of the four methods.

5 DISCUSSION
Results revealed that swipe was the fastest of all methods in both stationary and mobile settings.
The average task completion time for stepper, swipe, tilt, and force were 4.31 (SD = 1.8), 3.44 (SD
= 3.7), 4.97 (SD = 2.6), and 5.42 (SD = 3.7) seconds, respectively. On average, swipe was about
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30–45% faster than the other methods, regardless of the fact that it required significantly more
actions per task than picker and tilt. This is likely because participants found performing swipes
significantly easier than the other methods (Fig. 9). They also felt that performing swipes required
less cognitive and physical demand than tilt and force, and caused less frustration (Fig. 9b). They
found both stepper and swipe to be fast, accurate, and easy to use. There was no significant effect
of method × setting on task completion time, which indicates towards the possibility that the
performance of each method was similar across settings. This is interesting since prior studies
reported performance decay when walking and interacting with a mobile device at the same time
[4, 16]. This could be because of the slower pace of walking, and the use of a treadmill for walking
since it did not require navigation. In real-world scenarios, users are forced to split their attention
between the surroundings and the tasks on mobile devices to keep informed about the changing
ambient environment [4]. Relevantly, a recent study with a similar experimental setup also failed
to find a statistically significant difference in performance between input tasks in stationary and
mobile settings [44]. On average, stepper was faster than tilt and force, however this difference
was not statistically significant.

There was a significant effect of setting on actions per task, but no significant effect of method ×
setting. Which suggests that all methods suffered in terms of actions per task in mobile setting.
Participants most likely performed more incorrect actions while walking, requiring corrective
action, resulting in added actions per task. Interestingly, stepper took fewer actions than the other
methods. Average actions per task for stepper, swipe, tilt, and force were 1.69 (SD = 1.2), 3.69 (SD =
3.5), 2.35 (SD = 1.5), and 4.81 (SD = 4.9), respectively. We speculate this is because, users spun the
number wheel then waited until it slowed down, rather than a burst of repetitive spins. This also
explains the higher task completion time for the method (Fig. 8).
The effects of method on the dependent variables yielded medium–large effect sizes, while

the effect sizes of all statistically significant questionnaire data were large, indicating strong
relationships between the examined variables. However, the effects of setting yielded a small effect
size, hence we recommend caution in interpreting this result.

6 EXPERIMENT 2: INDIVIDUAL VS. INLINE
We conducted a second study to investigate whether the performance of the four methods differ
when working with individual values and values embedded in text (i.e., inline values). The purpose
was to find out whether the increased visual scan time and the physical and cognitive loads involved
in editing inline numeric values affect the performance of the examined methods. Inline values
usually require extra time to locate and select due to the surrounding text and the “fat-finger
problem” [65], respectively. The study protocol was reviewed and approved by the Institutional
Review Board (IRB). The study was completed before the World Health Organization declared the
outbreak of COVID-19 a pandemic.

6.1 Apparatus
We used the same apparatus as the first study (Section 4.1).

6.2 Participants
Twelve participants voluntarily took part in the study. None of them participated in the pilots or
the first study. Their age ranged from 20 to 32 years (M = 23.36, SD = 4.0). Two of them identified
themselves as female and ten identified as male. Ten of them were right-handed, one was left-
handed, and one was ambidextrous. All right-handed and ambidextrous participants chose to wear
the device on their left hand and interact with the device using the right hand, while the left-handed
participant chose to wear it on the right hand and use the other hand for interaction. They all

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. ISS, Article 500. Publication date: November 2021.



500:14 Yuan Ren and Ahmed Sabbir Arif

were experienced smartphone users (M = 7.62 years of experience, SD = 1.9). Three of them were
smartwatch owners (M = 1.8 years of ownership, SD = 0.8). Five of them also had experience using
force as an input modality on Apple iPhone devices (M = 1.9 years of experience, SD = 1.7). They
all received U.S. $10 for participating in the study.

Fig. 10. A numeric value embedded in text (left) and two participants taking part in the study by changing
an individual value and a value embedded in text, respectively (right).

6.3 Design
We used a within-subjects design for the study, where the independent variables were placement
and method, and the dependent variables were the same performance metrics as the first study
(Section 4.3). We also used the same questionnaires. In summary, the design was as follows.

12 participants ×
2 placements (individual and inline, counterbalanced) ×
4 methods (the default stepper, swipe, tilt, and force, counterbalanced) ×
15 random two-digit values between 9 and 100
= 1,440 numeric values in total, excluding practices.

6.4 Procedure
The study used the same procedure (Section 4.6) and experimental tasks (Section 4.4) as the first
study, with the setting independent variable replaced with placement.

(a) Task completion time (seconds) (b) Actions per task

Fig. 11. Average task completion time and actions per task for all methods in the two settings (individual and
inline). Error bars represent ±1 standard deviation (SD).
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6.5 Results
A Shapiro-Wilk test revealed that the response variable residuals are normally distributed. A
Mauchly’s test indicated that the variances of populations are equal. Thus, we used a repeated-
measures ANOVA to analyze the quantitative data. In contrast, we used a Friedman test to analyze
the questionnaire data. We also report effect sizes of all statistically significant results: eta-squared
(𝜂2) for ANOVA and Kendall’s𝑊 for Friedman test [3]. Eta-squared uses Cohen’s interpretation
[21] where 0.01 constitutes a small, 0.06 constitutes a medium, and > 0.14 constitutes a large
effect. Kendall’s𝑊 uses a different interpretation by Cohen [21], where 0.1 constitutes a small, 0.3
constitutes a medium, and > 0.5 constitutes a large effect. There were no significant effects of the
order of conditions on the dependent variables (𝑝 > .75), which suggests that counterbalancing
worked [50, pp. 177–180].

6.5.1 Task Completion Time. An ANOVA identified a significant effect of method on task com-
pletion time (𝐹3,33 = 69.88, 𝑝 < .000005, 𝜂2 = .23)6. An ANOVA also identified a significant effect
of placement (𝐹1,11 = 22.37, 𝑝 = .0006, 𝜂2 = .03). There was also a significant method × placement
interaction effect (𝐹3,33 = 4.60, 𝑝 = .0081, 𝜂2 = .01). A Tukey-Kramer Multiple-Comparison test
revealed that all methods were significantly different from one another. Swipe was significantly
faster and force was significantly slower than all other methods. Figure 11a illustrates average task
completion time for the four methods in both placements.

6.5.2 Actions per Task. An ANOVA identified a significant effect of method on actions per task
(𝐹3,33 = 5.17, 𝑝 = .004, 𝜂2 = .12). An ANOVA failed to identify a significant effect of placement
(𝐹1,11 = 0.34, 𝑝 = .57). There was no method × placement interaction effect (𝐹3,33 = 1.55, 𝑝 = .22). A
Tukey-Kramer Multiple-Comparison test revealed that stepper and force were significantly different
from one another. Stepper required significantly fewer actions per task compared to force. The
other two methods were comparable. Figure 11b illustrates average actions per task for the four
methods in both placements.

(a) Usability questionnaire (b) Partial NASA-TLX questionnaire

Fig. 12. Average user ratings of the four methods on a 7-point Likert scale, where “1” to “7” represented
“strongly disagree” to “strongly agree” (left) and on NASA-TLX’s 20-point scale, where “1” to “20” represented
“no demand” to “extreme demand” (right). Error bars represent ±1 standard deviation (SD).

6The 𝑝 value was too small for the NCSS and SPSS statistical software to display the exact value as they and most other
statistical software display values up to six decimal places.
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6.6 User Feedback
We used a non-parametric Friedman test to analyze the questionnaire data. Like the previous study,
we present raw TLX scores by analyzing the sub-scales individually [36].

6.6.1 Perceived Performance and Preference. AFriedman test identified a significant effect ofmethod
on ease of use (𝜒2 = 11.78, 𝑑 𝑓 = 3, 𝑝 = .008,𝑊 = .32). However, no significant effect was identified
on perceived speed (𝜒2 = 7.8, 𝑑 𝑓 = 3, 𝑝 = .05), perceived accuracy (𝜒2 = 7.73, 𝑑 𝑓 = 3, 𝑝 = .05),
learnability (𝜒2 = 7.19, 𝑑 𝑓 = 3, 𝑝 = .06), or willingness to use (𝜒2 = 10.07, 𝑑 𝑓 = 3, 𝑝 < .05). Figure
12a illustrates average user ratings of the four methods.

6.6.2 Mental and Physical Demand. A Friedman test identified a significant effect of method on
mental demand (𝜒2 = 11.64, 𝑑 𝑓 = 3, 𝑝 = .009,𝑊 = .32), physical demand (𝜒2 = 16.10, 𝑑 𝑓 = 3, 𝑝 =

.001,𝑊 = .45), and frustration (𝜒2 = 12.57, 𝑑 𝑓 = 3, 𝑝 = .006,𝑊 = .35). Participants found picker
and swipe to be the least mentally and physically demanding compared to tilt and force. They also
found the former methods to be the least frustrating. Force was rated substantially higher in terms
of mental and physical demand, as well frustration compared to the other methods. Figure 12b
illustrates average user ratings of the four methods.

7 DISCUSSION
The findings of this study are comparable to the first study. Swipe was significantly faster than
the other methods with both individual and inline numbers. Average task completion time for
stepper, swipe, tilt, and force were 4.23 (SD = 1.5), 3.13 (SD = 1.7), 5.23 (SD = 2.9), and 6.39 (SD = 4.3)
seconds, respectively. Also, stepper and force required the least and the most number of actions,
respectively. Average actions per task for stepper, swipe, tilt, and force were 1.67 (SD = 1.2), 3.02
(SD = 2.5), 2.01 (SD = 1.2), and 3.69 (SD = 4.5), respectively.

Qualitative results are also similar. Participants found both stepper and swipe significantly easier
to use than the other methods. They found picker and swipe to be the least mentally and physically
demanding compared to tilt and force. They also found swipe to be the least frustrating. These
findings establishes the swipe-based method as a more effective input stepper for smartwatches.
However, comparing Fig. 9b and Fig. 12b one can see that the methods were rated relatively poorly
on NASA-TLX scale in the second study. This is expected since the inline placement of the numeric
values required users to first locate and navigate to the value, then edit it, which required additional
effort.
The effects of method on the dependent variables yielded medium–large effect sizes, while

the effect sizes of all statistically significant questionnaire data were large, indicating strong
relationships between the examined variables. However, the effects of placement yielded a small
effect size, hence we recommend caution in interpreting this result.

7.1 Design Recommendations
Based on the results of the two studies and user feedback, we recommend using a hybrid of input
stepper and the swipe-based method to enable selection of numbers with short edit distances with
flicks (e.g., changing “12:15 pm” to “12:30 pm”) and long edit distances with swipes and swipe-and-
hold gestures (e.g., changing “15%” to “70%”). We also recommend automatically slowing down
the spinning rate when the number reaches a probable value for easier selection. A prior work
[58] showed that it is often possible to predict the intended value through contextual awareness
and even by using simple rules and patterns (for example, “12:30 pm” is more probable than “12:22
pm”). It may also be effective to enable users to select the method they prefer the most for picking
numbers.
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8 GENERALIZABILITY
Although it is relatively common to use smartphones or tablets to study interactions with smart-
watches because of the technological limitations of current smartwatches (e.g., [18, 46, 57]), due to
the absence of empirical evidence, it is unclear whether the performance recorded on a simulated
smartwatch is generalizable to actual smartwatches. Hence, to increase the external validity of the
work, we replicated not only the interface but also the holding position and posture of a smartwatch
(Fig. 6). In all evaluations, participants wore the simulated smartwatch (i.e., the smartphone) on
their wrist and interacted with it as one would with an actual smartwatch. Relevantly, a prior work
reported that text entry performances with similar sized virtual keyboards on an actual smartwatch
and a simulated smartwatch on a smartphone were not significantly different in terms of entry
speed and accuracy [70].

9 CONCLUSION
We presented three new methods for number picking on smartwatches by performing directional
swipes, twisting the wrist, and varying contact force on the screen. Unlike the default number
picker, the proposed methods enable users to actively switch between slow-and-steady and fast-and-
continuous increments and decrements. We evaluated these methods in two user studies, exploring
stationary vs. mobile settings and individual vs. inline number editing, respectively. In both studies,
the swipe-based method yielded a significantly faster input rate. Participants also found the method
fast, accurate, and the least mentally and physically demanding. Accuracy rates were comparable
among the conditions. These results establish swipe as an effective number picking method on
smartwatches.

10 FUTUREWORK
In the future, we will evaluate the proposed number pickers on larger touchscreen-based devices,
particularly smartphones and tablets. We will also design additional methods that exploit the crown
and the bezel of a smartwatch for number picking.
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